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Abstract

In this study a method for propagating the hydrological model uncertainty in discharge
predictions of ungauged Mediterranean catchments using a model parameter region-
alization approach is presented. The method is developed and tested for the Thau
catchment located in southern France using the SWAT hydrological model. Regional-5

ization of model parameters based on physical similarity measured between gauged
and ungauged catchments attributes is a popular methodology for discharge prediction
in ungauged basins, but it is often confronted with an arbitrary criterion for selecting the
“behavioral” model parameters sets (Mps) at the gauged catchment. A more objective
method is provided in this paper where the transferrable Mps are selected based on the10

similarity between the donor and the receptor catchments. In addition, the method al-
lows propagating the modeling uncertainty while transferring the Mps to the ungauged
catchments. Results indicate that physically similar catchments located within the same
geographic and climatic region may exhibit similar hydrological behavior and can also
be affected by similar model prediction uncertainty. Furthermore, the results suggest15

that model prediction uncertainty at the ungauged catchment increases as the dissim-
ilarity between the donor and the receptor catchments increases. The methodology
presented in this paper can be replicated and used in regionalization of any hydrologi-
cal model parameters for estimating streamflow at ungauged catchment.

1 Introduction20

Hydrological models are generally calibrated against observation variable(s), typically
streamflow, to estimate some parameters that cannot be measured directly and to
achieve a reliable prediction of the watershed response. However, in many cases, ob-
served streamflow data are not available or are insufficient and, therefore, the catch-
ment is considered as ungauged (Sivapalan et al., 2003) which may undermine the25

planning and the management of the water resources in the ungauged catchment. To
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overcome this problem, various regionalization techniques have been developed to es-
timate streamflow in ungauged catchments including methods based on the similarity
approach (Vandewiele and Elias, 1995; Idrissi et al., 1999; Merz and Blöschl, 2004;
McIntyre et al., 2005; Oudin et al., 2008) and the statistical approach (Sivapalan et
al., 2003; Yadav et al., 2007). The latter approach consists of deriving statistical re-5

lationships between catchment attributes (CAs), such as topography, soil, drainage
area, etc., and the optimized model parameter (Mps). Once these relationships have
been established, one can determine the parameters of an ungauged basin using its
CAs. Although it can be considered as the most common regionalization approach
for ungauged catchment (Wagener and Wheater, 2006), statistical approaches were10

deeply criticized due to the assumption that most statistical models consider linear-
ity between CAs and optimized Mps. On the other hand, regionalization based on the
similarity approach consists of transferring the information from donor catchment(s)
to receptor catchment(s). It involves the following steps: (1) the identification of donor
catchment(s), usually a gauged catchment(s), that is (are) most likely to be hydro-15

logically similar to the receptor catchment(s) (ungauged catchment(s)), and (2) the
transfer of the relevant information (Mps or streamflow records) from donor to receptor
catchment(s). Typically, Mps transfer from donor to receptor catchment(s) rely on either
physical similarity measures. In this case, the same CAs as used in the statistical tech-
nique can be adopted to identify similar catchments. Alternatively, use can be made20

of spatial proximity measures (e.g. the distance between the centroids of the catch-
ments). The similarity regionalization approach is lying on the assumption that similar
catchments behave hydrologically similarly. So, the definition of the similarity measure,
certainly subjective, will condition the success of the selected regionalization approach
(Heuvelmans et al., 2006).25

Several studies have focused on the transfer of Mps based on similarity approach
for predicting streamflow records at ungauged catchments (Merz and Blöschl, 2004;
McIntyre et al., 2005; Parajka et al., 2005; Bàrdossy, 2007; Oudin, et al., 2008). For
example, McIntyre et al. (2005) found that Mps transfer outperformed as compared to
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the statistical regression approach using a five parameters version of the PDM model,
applied on 127 UK catchments. Similar conclusions were drawn by Oudin et al. (2008)
using two conceptual rainfall-runoff models, GR4J and TOPMO, in 913 French catch-
ments. Parajka et al. (2005) showed also that similarity based regionalization approach
outperformed as compared to the regression approach. But, they concluded that the5

best performing regionalization method was a kriging method based on nearest neigh-
bor interpolation, followed by the similarity approach based on similarity of CAs be-
tween the donor and the receptor catchment. Other studies have reported that even
nearby catchments can be hydrologically different (Beven, 2000).

The similarity approach for regionalization of Mps in ungauged catchments implies10

the “good” performance of the calibrated hydrological model at the donor catchment.
Then, Mps that lead to “good” or “behavioral” model simulations are selected and trans-
ferred to the ungauged catchment. However, it is argued that hydrological model pre-
dictions, even in well gauged catchments are subject to inherent uncertainty that stems
from different uncertainty sources (e.g. inputs, parameter uncertainty, model structure,15

and observed data). Because of all these uncertainty sources, it is expected and ar-
gued that model calibration will lead to non-unique sets of parameters (Beven and
Binley, 1992) and, hence, it becomes difficult to associate the parameters estimated
through calibration with the physical characteristics of the catchment. While model pa-
rameters uncertainty at well gauged catchment has received considerable attention20

during the past two decades (Beven and Binley, 1992; Duan et al., 1992; Abbaspour
et al., 1997; Muleta and Nicklow, 2005; Vrugt et al., 2008; Yang et al., 2008; Zhang
et al., 2009; Shen et al., 2012), a little attention has been given to the uncertainty re-
sulting from Mps regionalization at the ungauged sites (Wagener and Wheater, 2006).
Furthermore, additional uncertainty related to the regionalization procedure that stems25

from the arbitrary choices of the CAs, or the similarity measure, or the selection of the
candidate parameter sets to be transferred can have a significant effect on the model
prediction uncertainty in the ungauged catchments. Addressing all these sources of
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uncertainty and understanding the way they can affect the model prediction in the un-
gauged catchment is a challenging task (Sivapalan et al., 2003; Wagener et al., 2004).

This paper aims to contribute to this challenge by addressing the following question:
how can Mps uncertainty of donor catchments be propagated through regionalization
schemes based on the similarity approach, and how does it affect the prediction uncer-5

tainty in ungauged catchment? Specific questions are: (1) is the selected hydrological
model suitable for reproducing the hydrology in the ungauged catchment? (2) How
does parameter uncertainty affect model prediction uncertainty in the ungauged catch-
ment through the regionalization scheme?

In an attempt to answer to these research questions, the paper is organized in 310

main sections. In the first section the study site, the data available, the modeling ap-
proach and the regionalization procedure are described. The second section describes
and discusses the results of the modeling and the regionalization approach. The final
section reports the main outcomes of the paper as a summary and conclusions.

2 Study site description and available data15

2.1 Study site description

The Thau catchment is located on the French Mediterranean coast (Languedoc-
Rousillon region) and drains an area of approximately 280 km2. The catchment is
drained by ten streams that flow directly into the lagoon (Fig. 1). The basins size
varies from 3.42 km2 to 67 km2 with the biggest one corresponding to the Vène catch-20

ment. Other geomorphologic and topographic characteristics of these catchments are
given in Table 1. Dominant land use types within the study site are vineyards and
non-agriculture vegetation (trees, Mediterranean sclerophyllous vegetation). The dis-
tribution of the main land use within each sub-catchment is given in Table 1. The
eastern part of the Thau catchment area is composed of Jurassic limestone overlaid25

by Miocene marls in its central part, corresponding to 60 % of the Vène watershed
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surface. These Jurassic limestone are characterized by the presence of a large karstic
aquifer whose limits extend the topographic limit of the catchment and strongly influ-
ences the hydrological regime of the Vène catchment (Plus et al., 2006; Gallart et
al., 2008; Perrin and Tournoud, 2009; Chahinian et al., 2011). Soils in this part of the
Thau catchment are mainly sandy-loam and silty-loam soils with porosity ranging from5

35 to 50 % at 1 m depth of the soil profile. The western part of the Thau catchment
is composed of the Eocene marls overlaid mainly by the Miocene marls. This region
covers the central part of the Pallas, Aygues Vacques, Nègues Vacques, Mayroual,
Soupié and Fontanilles catchments with silty-clayey-loam and loam textured soils so
that runoff generation process are expected to be different from the eastern part.10

2.2 Available data

The climate is a typical Mediterranean regime characterized by a large seasonal vari-
ability of rainfall in time and space with an annual average value of 600 mm. Precipita-
tion occurs as short intense storms mainly during autumn and spring (from September
to January) and separated by a long dry period (from February to August). The hottest15

months are July and August where the maximum temperature can exceed 35 ◦C and
the coldest months are December and January where daily minimum temperature can
reach −5 ◦C.

Data such as a Digital Elevation Model (50 m grid, provided by the French National
Geographic Institute), a soil map (50 m resolution, provided by the INRA Montpellier)20

and land use maps (50 m resolution) for 1996 (La Jeunesse et al., 2002) and 2010 are
available for each catchment. Daily precipitation data (from 1990 to 1999) are provided
by five rain gauge stations located within the study area but only the Sète rain gage
(French national meteorological station of Météo France) has daily precipitation data
that covers the 2007–2009 period (Fig. 1). Daily temperature is provided from the me-25

teorological station of Sète. Daily wind speed, air relative humidity and solar radiation
are provided from the meteorological station of Fréjorgues airport located 20 km in the
northeastern of the Thau catchment.

4957

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/4951/2013/hessd-10-4951-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/4951/2013/hessd-10-4951-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 4951–5011, 2013

Uncertainty analysis
in model parameters

regionalization

H. Sellami et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

In the Thau basin about two years (1994–1996) streamflow records are available
for the Vène and the Pallas catchments, while for the other rivers, streamflow records
are either missing or either have missing values and are not long enough to allow
direct model calibration. The available streamflow records are different in time and
length between the catchments. For instance, the Pallas and the Vène catchments5

have daily streamflow records covering the 1994–1996 periods, with 208 and 667 ob-
servations, respectively, while the Soupié and Fontanilles catchments have stream-
flow of 500 daily records but covering the 2007–2009 period. Daily discharge at the
Aygues Vacques and Joncas catchments covers the same time period (2007–2009)
but with very short time series length (80 days) whereas the Lauze, Nègues Vacques10

and Mayroual catchments do not have any streamflow records. Such a case of poorly
gauged catchments is very common in semi-arid and Mediterranean area and, when
coupled with discontinuities in flow regime of ephemeral rivers, make the modeling of
the discharge challenging. Despite that observed streamflow time series are available
for some catchments but at different time periods (1994–1996 and 2007–2009), climate15

characteristics (mean daily/annual precipitation, mean, maximum and minimum daily
temperature, etc.), between these two time periods are relatively similar. However, land
use and land cover (LULC) types between the time periods have undergone a slight
change according to the LULC map of 1996 and 2010. Figure 2 shows the change of
LULC occurred in the Pallas and in the Vène catchments between 1996 and 2010. It20

shows that the surface that are for vineyards have decreased by an average of 13 %
whereas non-agriculture vegetation has increased by an average of 7 %. Despite that,
it is well argued that LULC is one of the major drivers of the hydrological processes and
catchment runoff response (Nathan and McMahon, 1990; Wagener et al., 2007). The
study of the effect of land use change on model parameters regionalization approach25

results is, however, not within the objectives of this paper.
As the Pallas and the Vène catchments were subject to previous studies (La

Jeunesse et al., 2002; Plus et al., 2006; Chahinian et al., 2011; Sellami et al., 2013)
more detailed data are available for these subcatchments. Therefore, the Vène and
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the Pallas catchments are considered as gauged catchments, while all the other small
catchments are considered ungauged.

3 Description of the hydrological model

The Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998) is a continuous-time
and physically based hydrological model. SWAT is developed to predict the impact5

of land management practices on water, sediment and agricultural chemical yields in
large complex catchments with different soil, land use and management conditions over
long periods of time (Eckhardt et al., 2005). The hydrological model operates by divid-
ing the watershed into subbasins. Each subbasin is further discretized into a series of
hydrologic response units (HRUs), which are unique soil-land use combinations. Soil10

water content, surface runoff, nutrient cycles, sediment yield, crop growth and man-
agement practices are simulated for each HRU and then aggregated for the subbasin
by a weighted average. The hydrological balance is calculated based on the following
equation:

SWt = SW0 +
t∑

i=1

(
P −Qsurf −E −W −Qgw

)
i

(1)15

where t is the time in days, SWt is the final soil water content, SWt is the initial soil
water content, P is the precipitation on day (i ), Qsurf is the surface runoff on day (i ), E
is the evapotranspiration on day (i ), W is the amount of water percolated from the soil
profile on day (i ) and Qgw is the return flow or groundwater flow that contributes to the
streamflow on day (i ). All parameters are expressed in (mm) over the catchment area.20

The water in each HRU in SWAT is stored in four storage volumes: snow, soil profile,
shallow aquifer, and deep aquifer. Surface runoff from daily rainfall is estimated using
a modified SCS curve number method, which estimates the amount of runoff based on
local land use, soil type, and antecedent moisture condition. Calculated flow, sediment
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yield, and nutrient loading obtained for each subbasin are then routed through the river
channel using the variable storage or Muskingum method. The watershed concentra-
tion time is estimated using Manning’s formula, considering both overland and channel
flow.

The soil profile is subdivided into multiple layers that support soil water processes5

including infiltration, evaporation, plant uptake, lateral flow, and percolation to lower lay-
ers. The soil percolation component of SWAT uses a water storage capacity technique
to predict flow through each soil layer in the root zone. Downward flow occurs when
field capacity of a soil layer is exceeded and the layer below is not saturated. Perco-
lation from the bottom of the soil profile recharges the shallow aquifer. The amount of10

water entering the shallow aquifer is a function of the total water volume exiting the
soil profile and an exponential decay function to account for the recharge time delay
(GW DELAY). The latter is depending on the overlying geologic formations. If the depth
of the shallow aquifer increases above the user defined threshold value (GWQMN), it
is assumed that groundwater discharge is occurring and contributing to the reach. Up-15

ward flow movement to the overlaying unsaturated soil layers is simulated by routing
water in the shallow aquifer storage component to the soil by capillary pressure or by
direct absorption by the plant roots. This remove water process is termed “revap”. The
amount of water removed via “revap” is correlated to the parameter GW REVAP.

The model computes evaporation from soils and plants separately. Potential evapo-20

transpiration can be modelled with three options available in SWAT, that is, Penman-
Monteith, Priestley–Taylor and Hargreaves methods (Neitsch et al., 2005), depending
on data availability. Potential soil water evaporation is estimated as a function of poten-
tial ET and leaf area index. Actual soil evaporation is estimated by using exponential
functions of soil depth and water content. Plant water evaporation is simulated as a lin-25

ear function of potential ET, leaf area index, and root depth, and can be limited by soil
water content. More detailed descriptions of the SWAT model can be found in Neitsch
et al. (2005).
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The SWAT simulations are conducted on the gauged catchments from 1990 to 1996
with 4 yr (1990–1993) as a warming-up period to minimize the effects of the initial state
of SWAT variables on river flow. The modified SCS curve number method is chosen for
surface runoff volume computing. The variable storage coefficient method is selected
for the flow routing through the channel and potential evapotranspiration is estimated5

by the Penman-Monteith method. The daily stream flow data from 2 August 1994 to
1 September 1996 and from 25 November 1995 to 14 June 1996 for the Vène and
the Pallas catchments, respectively, are used to assess the model prediction perfor-
mances.

4 Modeling approach10

4.1 Sensitivity analysis (SA)

A way to deal with high-dimensional hydrological models, such as SWAT, is to conduct
SA to select only the sensitive model parameters that are assumed to represent the real
system behavior. In the current study case, a SA is conducted using the built-in SWAT
SA tool that uses the Latin Hypercube One-factor-AT-a Time (LH-OAT) (van Griensven15

et al., 2006) method. In the LH-OAT technique only one input parameter is modified
between two successive model runs. Therefore, the change in model output can then
be attributed to such parameter modification. Parameter that induces the highest model
output change is ranked first and the less sensitive parameter is given a rank equals to
the total number of parameters. A complete detailed explanation of this SA technique20

can be found in van Griensven et al. (2006).
SA is performed on 17 SWAT model parameters that may have a potential to in-

fluence the flow river. Snow parameters are not included in the SA since the study
site belongs to a semi-arid climate and the flow is not affected by the snow melt pro-
cess. The ranges of parameters variation are based on the SWAT manual (Neitsch et25

al., 2005) and are sampled by considering a uniform distribution (Yang et al., 2008;
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Chahinian et al., 2011) in their physical range. Ten sensitive SWAT parameters are
identified for each of the Pallas and the Vène catchment (Table 2). The identified sen-
sitive parameters are the same for both cases but they differ in their rank. The first
two ranked parameters are groundwater related parameters: ALPHA BF (a parameter
that expresses the recession or the rate at which the groundwater is returned to the5

flow) and GWQMN (a threshold depth of water in the shallow aquifer required to return
flow). The third ranked parameter for the Vène river is GW DELAY, which is defined
as the required time for water leaving the bottom of the root zone to reach the shallow
aquifer where it can contribute to lateral groundwater flow. This groundwater parameter
is ranked 7th for the Pallas river. The third ranked parameter for the Pallas river is CN2,10

which is the initial SCS runoff curve number for moisture condition and that determines
the volume of surface runoff contributing to the total stream flow. This latter parameter
is a surface runoff parameter that depends on several factors including soil types, soil
textures, soil permeability, land use properties, etc. The remaining sensitive parame-
ters for the Vène and the Pallas catchments are mainly direct or indirect surface runoff15

parameters: CH K, which is the hydraulic conductivity of the channel; CH N, which
is the manning’s value of the tributary channel; ESCO, which is the soil evaporation
compensation factor which directly influences the evapotranspiration losses from the
watershed; EPCO, which is the plant uptake compensation factor and expresses the
amount of water needed to meet the plant uptake demand; GW REVAP, which is di-20

mensionless coefficient controlling the rate of water movement between the root zone
and the shallow aquifer; and SURLAG, which controls the fraction of the total water
that is allowed to enter the stream on any specific day.

It is argued that in order to provide better identified models and to ensure high region-
alization potential, the structure of the selected hydrological model should be reduced25

to only components that describe the key process of the system. Therefore, it is sug-
gested that the number of required model parameter should not be more than half
a dozen (Wagener et al., 2001). However, the approach to retain only the necessary
model structure components (parsimonious model) do not necessary guarantees that
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all the hydrological processes of the watershed are identified and represented, espe-
cially in complex hydrological systems. However, from the results of the SA and the
physical meaning of the selected sensitive parameters it is obviously difficult to select
less than 10 parameters in the current study cases. In addition, it is well known that
the hydrological processes are complex in the study area due to the presence of the5

karstic aquifer in the Vène watershed (Plus et al., 2006; Gallart et al., 2008; Perrin and
Tournoud, 2009; Chahinian et al., 2011). Hence, selecting the 10 sensitive parame-
ters described above ensures that the model does not omit one or more hydrological
processes important for this particular case study. Furthermore, other studies deal-
ing with the SWAT model have identified more or less 10 sensitive parameters that10

are assumed to describe appropriately the hydrological process of the real system.
For example, Heuvelmans et al. (2004) have identified 7 sensitive SWAT model pa-
rameters related to flow generation to be regionalized in Northern Belgium. Gitau and
Chaubey (2010) have selected 16 SWAT parameters for flow prediction in ungauged
catchments. Chahinian et al. (2011) have calibrated 14 SWAT model parameters for15

modeling flow and nutrient emission processes. They found that 12 sensitive parame-
ters are directly and indirectly related to flow simulation.

4.2 Uncertainty analysis (UA)

The Generalized Likelihood Uncertainty Estimation, GLUE, (Beven and Binley, 1992) is
selected for assessing the model parameter uncertainty. The reasons behind selecting20

GLUE are its simple concept, its relative ease of implementation and use without major
modifications to the method itself. GLUE is a Monte Carlo based method for modelling
uncertainty analysis (Beven and Binley, 1992; Freer et al., 1996, for details). GLUE is
based on a large number of model runs with different combinations of the parameter
values chosen randomly and independently from the prior distribution of the param-25

eter space. By comparing predicted and observed responses, each set of parameter
values is assigned a likelihood value (function that quantifies how well that particular
parameter combination simulates the observed system); higher values of the likelihood
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function typically indicate better correspondence between the model predictions and
observations. Based on a cutoff threshold, the total sample of simulations is then split
into “behavioral” and “non-behavioral” parameter combinations. The distribution of the
likelihood value for “behavioral” sets is treated as a probabilistic weighting function for
the predicted variables (Beven and Binley, 1992). According to this, a cumulative distri-5

bution of the model predictions is formulated and the desired quantiles are computed
to represent the uncertainty. Uncertainty of a model is stated by giving a range (or a
band) of values that are likely to enclose the true value of a specific simulated vari-
able: stricter uncertainty bands demonstrate lower uncertainty while larger bands are
caused by highly uncertain models. Using the concept of uncertainty, the “behavioral”10

models are these able to “correctly” simulate the variable of interest while minimizing
the width of the uncertainty bands.

Some subjective choices are considered within the implementation of the GLUE
framework in this study. The prior distributions of the selected parameters are assumed
to follow a uniform distribution over their respective range (Table 2). This initial distri-15

bution is chosen since the real distribution of the parameter is unknown. Parameters
ranges are chosen based on the SWAT manual (Neitsch et al., 2005) and previous
GLUE applications with the SWAT model (Yang et al., 2008; Shen et al., 2012). To
sample the prior parameter distribution in the GLUE methodology, a simple random
sampling is implemented. The number of sampling sets is set to 10 000. Previous ap-20

plications of GLUE with the SWAT model have used this number of model runs to
assess uncertainty of about 10 sensitive SWAT model parameters (Yang et al., 2008;
Gong et al., 2011). Moreover, it was mentioned by Yang et al. (2008) that no significant
change was observed in the GLUE results between 10 000 and 20 000 model runs. So,
the selected number of 10 000 simulations is considered reasonably sufficient for this25

study. The likelihood function selected is the Nash and Sutcliffe (1970) efficiency coef-
ficient (NS) since it is widely used as a likelihood measure within GLUE in the literature
(Beven and Freer, 2001; Arabi et al., 2007; Shen et al., 2012).
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NS = 1−

n∑
i=1

(Pi −Oi )
2

n∑
i=1

(
Oi − Ō

)2
(2)

with Oi is the observed value, Ō mean observed values and Pi is the predicted value.
The range of NS lies between 1 (perfect fit) and −∞.

The cutoff threshold selected to separate “behavioral” from “non-behavioral” param-
eter sets is another subjective choice within the GLUE method. Frequently, when the5

likelihood value is greater than zero the corresponding simulations are considered “be-
havioral” (Freni et al., 2010; Gong et al., 2011). For application of the GLUE method
in this study, model simulations with negative NS values are considered unacceptable
and, therefore, the corresponding parameter sets are discarded from further analysis.

The selection of the threshold value is an entirely arbitrary choice that affects the10

prediction uncertainty (Montanari, 2005; Mantovan and Todini, 2006) and probably is
the most important concern for the GLUE method. A small cutoff threshold will lead
to larger “behavioral” simulations and larger uncertainty bands, while larger threshold
value will decrease the numbers of “behavioral” models and will reduce the uncertainly
interval width (Xiong and O’Connor, 2008; Blasone et al., 2008; Viola et al., 2009). In15

addition, selecting a very high threshold value, to ensure that “behavioral” parameter
set represent well the real system, may lead to identify only one parameter set as
“optimal” which is inconsistent with the overall GLUE philosophy.

The selection of the confidence level has an impact on the parameter uncertainty
analysis within the GLUE framework (Blasone et al., 2008; Jin et al., 2010; Gong et al.,20

2011). However, it is common that the 95 % confidence interval is used for the uncer-
tainty analysis, despite that it may not be able to capture the entire observation vari-
able and, hence, not representing all the uncertainty (Montanari, 2005; Beven, 2006;
Xiong and O’Connor, 2008). As the GLUE method is dependent on all these subjective
decisions that influence the final uncertainty prediction, it has been deeply criticized25
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and its several drawbacks have been well pointed out and discussed in the literature
(Montanari, 2005; Mantovan and Todini, 2006).

4.3 The regionalization schemes

The adopted regionalization method for this study is the transfer of Mps from donor
to receptor catchment based on the similarity between their physical attributes (topog-5

raphy, geology, soils, drainage area, etc.). The physical similarity approach is based
on the assumption that catchment physiographic characteristics predetermine the hy-
drological behavior. Therefore, a selection of relevant CAs is crucial for the success
of the regionalization procedure. The catchments attributes (CAs) selected and used
to define similarity are related to topography, land cover, drainage area, soil and ge-10

ology features (Table 1). They are derived from the available data such as land use
maps, soil maps, digital elevation model and geology maps. These CAs are generally
considered as the main drivers of the hydrological process in the literature and are the
most common ones used to define similarity between catchments in model parameter
regionalization schemes (Merz and Blöschl, 2004; Heuvelmans et al., 2006; Wagener15

et al., 2007; Bastola et al., 2008). For instance, Heuvelmans et al. (2006) have consid-
ered catchment area, average slope, dominant land use and soil texture classes as the
most appropriate catchment descriptors in model parameters regionalization in Flem-
ish part of the Scheldt river basin (Belgium). Besides these CAs, others authors have
used flow indices or characteristics using FDC (Masih et al., 2010), indices of hydro-20

logical responses (Yadav et al., 2007) or hydro-meteorological long term data (Bastola
et al., 2008) as relevant catchment descriptors. However, the selection of the appro-
priate CAs depends also on the physical meaning of the selected model parameters,
on the objective of the regionalization procedure and on the knowledge about the key
hydrological processes accruing within the catchment. For example, when the objec-25

tive of the regionalization procedure is to estimate the flow in ungauged catchments,
as in our case, the use of flow characteristics or indices as input is useless. Model
parameters, especially theses of physically based model such as SWAT, are assumed
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to be closely related to CAs and, thus, represent the functional beahviour of the catch-
ment response. For instance, in the SWAT model the curve number parameter (CN2)
depends on the soil and land use characteristics of the catchment, therefore, they are
considered among the relevant catchment descriptors. Knowledge about the key pro-
cess in the system can also assist the selection of the relevant CAs. As an example,5

the geology is considered as relevant catchment descriptor in our study case since
it is known that the Jurassic limestone aquifer in the eastern part of the Thau catch-
ment strongly influences the hydrological regime of the Vène catchment (Sellami et al.,
2013).

The soil characteristics are based on the dominant soil texture (% clay, % silt, %10

sand) within each catchment. The main geological feature considered is the surface
catchment percentage covered by the Jurassic limestone estimated using the GIS
tools based on a simplified geological map of the Thau catchment. Other geomor-
phologic and topographic descriptors (mean elevation, mean slope, drainage area) are
also calculated using GIS tools and are reported in Table 1. Besides the CAs, it is very15

common that climatic characteristics such as long-term precipitation characteristics,
the annual precipitation, annual potential evapotranspiration index, solar radiation, etc.
(see, Wagener et al., 2007), are used for the similarity measure between the catch-
ments. However, in our case study such climatic descriptors are omitted since we are
dealing with small and geographically close catchments located within a relatively small20

area under the same climate regime.
Unfortunately, there does not exist a universally accepted metric or combination of

metrics to quantify catchments similarity in the catchment attribute space. Some au-
thors have used the inverse of the Euclidean distance (Heuvelmans et al., 2004) in the
catchment attribute space. Others (Parajka et al., 2005) have used the normalized sum25

of the absolute difference between catchment attributes, while, again, others authors
(Masih et al., 2010) have used the weighted normalized sum of the absolute difference
where the user can assign equal or more weight to individual catchments attributes
in order to consider their varying assumed importance. To identify similar catchments
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groups, catchments can be merged into a larger cluster in a hierarchical way. At each
step the average link distance between clusters using the average linkage method can
be computed and the clusters with the largest similarity are merged. The Pearson’s cor-
relation coefficient, denote hereafter as R2, can be used as a similarity metric between
catchment attributes; the higher the R2 between the target and the donor catchments,5

the more similar they are. Once the clusters are established, information can be trans-
posed from donor(s) to receptor(s) catchment(s). In complex hydrological models this
transfer of information is a difficult task due to the parameter uncertainty, to their in-
terdependency, to the non-unique solution and to other various sources of uncertainty
(Bárdossy, 2007). Some authors, Heuvelmans et al. (2004); McIntyre et al. (2005);10

Bárdossy (2007); Oudin et al. (2008) and He et al. (2011), suggest the transfer of the
entire parameter sets to the ungauged catchment(s) justifying that transferring the en-
tire parameter sets does not interfere with the integrity of the model parameters as a
set and that the entire hydrological processes are considered at once.

The traditional way of transferring the Mps from donor(s) to receptor(s) catchment(s)15

can also be based on the selection of the “behavioral” Mps obtained from simulations
with likelihood values (e.g. NS coefficient) above certain user defined threshold value at
the donor(s) catchment(s). However, doing this way all the receptor(s) catchment(s) will
receive equal number of Mps despite that they are not equally similar to the donor(s)
catchment(s). This may overestimate the prediction uncertainty at the closest recep-20

tor(s) catchment(s) and may underestimate it at catchments that are further from the
donor(s) catchment(s). Furthermore, the selection of the “behavioral” Mps is based on
an arbitrary and entirely subjective choice of a threshold value which may add to the
uncertainty of the final regionalization results.

In this section we propose a more objective method for selecting the appropriate25

Mps sets to be transferred from gauged catchment(s) to ungauged catchment(s). The
method is based on the similarity metric and consists in (i) retaining the GLUE Mps that
led to positive simulations (NS>0) in the gauged catchment(s), (ii) using the similarity
measure value between the donor(s) and the receptor(s) catchment(s) as a threshold
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value to determine the candidate parameter sets and (iii) transferring the selected en-
tire unchanged parameter sets to the ungauged catchment(s) and calculating the cor-
responding prediction uncertainty interval. The threshold metric used in this approach
is defined as follows:

Thresh(d,r) = R2
(d,r) ×maxNSd (3)5

where R2
(d,r) is the similarity measure between the donor catchment (d) and the recep-

tor catchment (r) and scaled between 0 and 1 and NSd is the highest likelihood value
reached in the model simulations at the donor catchment (d). To compute the threshold
value (Thresh(d,r)), the similarity matrix between all catchments attributes is calculated
(data not shown). By applying Eq. (3) the number of the candidate Mps will increase10

linearly as the dissimilarity between the donor(s) and the receptor(s) catchment(s) in-
creases. Furthermore, besides parameter uncertainty, additional uncertainty related to
the regionalization schemes is explicitly accounted in the final model prediction uncer-
tainty at the ungauged catchment(s) by introducing the similarity measure in Eq. (3).
As the dissimilarity between the donor(s) and the target catchment(s) increases, model15

prediction uncertainty in the target catchment(s) intuitively increases and vice versa.
Another advantage of using Eq. (3) is that the selection of the threshold value to define
the number of the candidate Mps is based on the similarity metric rather than on a sub-
jective choice of the modeler which may reduce this additional uncertainty component
in the final regionalization procedure. Once the threshold value (Thresh) is calculated20

the entire selected Mps is transferred from the donor catchment(s) to the receptor(s)
catchment(s).

To transfer the entire parameter sets derived by GLUE in the gauged catchment(s)
without further change and update the parameter values in its corresponding SWAT

text file, a sampling and rewriting program in the MATLAB® computing language was25

developed and linked to the GLUE and the SWAT model.
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4.4 Modeling evaluation criteria

Besides the NS statistical criteria the correlation coefficient R2 is used to assess the
goodness of fit between observation and the SWAT model simulations. The SWAT
Model prediction uncertainty is quantified by the p factor which is the percentage of
measured data bracketed by the 95 % prediction uncertainty (95 PPU) and by a mea-5

sure of the Average Relative Interval Length (ARIL) proposed by Jin et al. (2010).
However, for a more efficient comparison between the ungauged catchments with-
out observations data, the ARIL was modified by standardizing the upper and lower
boundary values of the simulated point by its mean value. The modified ARIL is called,
hereafter, the Average Standardized Relative Interval Length (ASRIL).10

p factor =
NQin

n
×100 (4)

ASRIL =
1
m

m∑
t=1

QM
t,97.5 % −QM

t,2.5 %

Mean(QM
t )

(5)

where NQin is the number of observed discharge falling in the 95 PPU, QM
t,97.5 % and

QM
t,2.5 % represent the upper and lower simulated boundary, respectively, at time t of the15

95 PPU, n is the number of observation data points, m is the length of simulation, the
subscript M refers to simulated, t refers to the simulation time step. The goodness of
calibration and prediction uncertainty was judged on the basis of the closeness of the
p factor to 100 % (i.e., all observations are bracketed by the 95 PPU) and the ASRIL to
0 (if there is no uncertainty, the value of ASRIL is zero). A small value of ASRIL and20

higher value of p factor represent better performance.
To assess the relative performances of the regionalization procedure for flow esti-

mation in ungauged catchments, usually the simulated flow is compared to the ob-
served one and/or sometimes gauged catchments are considered in turn as if they
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are ungauged (Oudin et al., 2008). In the current work, catchments have very scarce
streamflow records. Therefore any available observation data, field knowledge and/or
previous work conducted in the area of interest can be precious and helpful to check the
performance of the adopted regionalization method. Performance assessment of the
regionalization procedure is based on three evaluation criteria. The first one namely fit5

to observation (van Griensven et al., 2012) and consists of the quantitative assessment
of model accuracy simulations compared to measurements using some statistical crite-
ria. In this regard, the simulated FDCs flow percentiles are compared to the observed
ones by using the NS coefficient and the model prediction uncertainty is assessed
through the p factor (percentage of observed data bracketed in the 95 % uncertainty10

interval) wherever observation data are available. The second one is called fit to reality
(van Griensven et al., 2012) and consists of the evaluation of the model capability in
reproducing the real hydrological process and in reflecting the reality of the field. For
instance, the predicted mass balance can be calculated and used to assess the perfor-
mance of the regionalization procedure in representing the main hydrological process15

that govern the hydrology of the study region. The third evaluation criterion is called fit
to geography and it consists of mapping the predicted variable in order to check the
soundness of its spatial distribution with some observed data (e.g. soil moisture map)
or with some field knowledge (e.g. geology, karstic system, etc.).

5 Results and discussions20

5.1 Model performances and prediction uncertainty at the gauged catchments

The NS values range from 0 to 0.71 with an average value of 0.47 for the Vène catch-
ment while they range from 0 to 0.76 with an average value of 0.60 for the Pallas
catchment. The correlation coefficient (R2) is higher than 0.80 in both catchments in-
dicating that SWAT is able to satisfactorily reproduce the general behavior of the ob-25

served hydrograph of both watersheds. The GLUE parameter sets are more robust
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and consistent in providing simulations that match better the observations of the Pallas
catchment than these of the Vène catchment.

The 95 % GLUE prediction interval (95 PPU) is considered for uncertainty analysis.
The average width of the 95 PPU is evaluated using the ASRIL and the percentage of
data bracketed by this interval is estimated using the p factor. The 95 % GLUE uncer-5

tainty interval for the Vène and the Pallas catchments is plotted in Fig. 3. The ASRIL
and the p factor are 2.48 and 70 % for the Pallas catchment, while the same statistics
are 2.75 and 63 % for the Vène catchment, respectively. The ASRIL values indicate
larger uncertainty interval in the Vène catchment than in the Pallas catchment. The
statistics are far from their suggested values (ASRIL≈0 and p factor≈100 %) which10

indicate wide uncertainty prediction. Theoretically, by selecting the 95 % prediction in-
terval one would expect a p factor of 95 %. However, this is not the case in the current
GLUE results. The p factor in both watersheds is lower than the specified prediction
level. This suggests that parameter uncertainty alone cannot compensate for all mod-
eling uncertainty sources (e.g. input data, parameter uncertainty, model structure un-15

certainty, error in the measured data, etc.). In addition, this difference can also be due
the subjectivity involved within the GLUE procedure for selecting the threshold value,
the likelihood function, the initial parameter distribution, etc. This result is consistent
with those reported in the literature (Xiong and O’Connor, 2008; Shrestha et al., 2009).

It is clear from the statistical factors and the graphical inspection of Fig. 3, that even20

though the 95 PPU of the Vène catchment is larger than the Pallas one, the former is
bracketing more observation data. In addition, the predicted recession flow and base-
flow are both affected with wide uncertainty, especially these of the Vène catchment.
The difference in the 95 PPU interval width between the two catchments can be ex-
plained by the influence of the karstic system. Indeed, it was shown in previous studies25

(Gallart et al., 2008; Perrin and Tournoud, 2009; Chahinian et al., 2011) that the Vène
streamflow is considerably dependent on the karst contribution. The Karst term is gen-
erally used to refer to subterranean area where groundwater flows in conduits and
channel and can contribute to the surface stream through springs. The karst features
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in the Vène catchment derive from the dissolution of the Jurassic limestone in the Thau
catchment (Aquilina et al., 2002). However, these karst features are difficult, even im-
possible, to be accurately represented within the current SWAT framework. Indeed, the
knowledge limitations concern the precise localization within the Vène catchment of
the karst features such as springs, sinkholes and the real extend of the whole karstic5

network and their characteristics (drainage area, hydraulic conductivity, groundwater
conduits network, etc.). Model structure limitations are due to the inaccurate represen-
tation of the real hydrogeological boundaries of the Vène karst system, which exceeds
its topographic boundaries. Therefore, much less water is simulated by the model than
the real water that may contribute to the Vène streamflow. In addition, in the SWAT10

model, water that infiltrates through the soil recharges the aquifer and contributes to the
return flow within the same subbasin. Transfer of water from one subbasin to another
is not allowed. However, springs can receive water from an extended karstic network
that exceeds the topographic boundaries of the subcatchment. Other studies (Spruill
et al., 2000; Coffey et al., 2004; Benham et al., 2006) have reported the difficulty of15

the SWAT model to accurately represent karstic-fed catchment. Afinowicz et al. (2005)
have concluded that SWAT needs major change to adequately simulate baseflow and
return flow. Such SWAT modification was adopted by Baffaut and Benson (2009) to al-
low faster percolation through the soil substrate and recharge of the aquifer to simulate
quick movement of water through vertical conduits that characterize karst topography.20

Their results showed improved partitioning of streamflow between surface and return
flow and significant sustainable flow, even during summers with lack of precipitation.
However, the conceptualization of the karst system and the SWAT code change are
beyond the scope of this study.

Besides the model prediction uncertainty, the parameters correlation and posterior25

distribution are investigated (results not shown). It is noted that different GLUE param-
eter combinations lead to similar model results in both case study. This is known as
the equifinality concept (Beven and Binley, 1992) which is behind the GLUE method
philosophy. Equifinality originates from the imperfect knowledge of the system under
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consideration and from different error sources (errors in input and boundaries condi-
tions, errors in using an approximate model structure of the real system and error in
the observation variable being modelled) that can interact in a non-linear way (Beven,
2006). In addition, some parameters depicted as very sensitive by the SA method
turned out to be less sensitive or less important by the GLUE method, such as AL-5

PHA BF and GWQMN. In fact, given the equifinality behind the GLUE concept and the
possible correlations and interactions between parameters, a single parameter may
lose in importance in the context of a combination of parameters values. As a corollary,
GLUE cannot reveal the sensitivity of a single parameter.

The posterior parameters distribution (PDs) derived from the Monte Carlo runs are10

large and rather uniformly distributed over their range. This is because GLUE tends
to flatten the response surface of the parameter by given equally weight to behavioral
model runs. These results are consistent with previous studies (e.g. Yang et al., 2008;
Dotto et al., 2012). However, the PDs shape and the uncertainty range of the param-
eters is dependent on the selected threshold value (Fig. 4). By selecting a threshold15

NS≥0, all parameters are rather uniformly distributed which lead to non-identifiable pa-
rameters indicating wide parameter uncertainty. While increasing the threshold value
to NS=0.60, some parameter PDs become narrower and peakier and well identified.
This is illustrated in Fig. 4 for the example of the CN2 and GW DELAY for the Vène
catchment, and CN2 and SURLAG parameters for the Pallas catchment. In addition to20

the shape of the parameter PDs, increasing the threshold value results in a decline of
the numbers of “behavioral” Mps retained and causes the depletion of the coverage of
the observation by the GLUE uncertainty interval. For instance, by selecting a threshold
value NS≥0.60, the p factor decreased from 70 % to 46 % and from 63 % to 53 % for
the Pallas and the Vène catchments, respectively. The ASRIL also decreased to 2.2325

and to 1.92 in the Vène and in the Pallas catchments, respectively, following the in-
crease of the threshold value. These results are in accordance with the findings of Bla-
sone et al. (2008) and Gong et al. (2011) and suggest that interpretation of parameter
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uncertainty derived by GLUE is always conditioned to the choices of threshold value
and the prediction uncertainty level.

Investigations of the parameters correlation matrices (data not shown) show very low
correlation between the parameters. It seems that GLUE does not explicitly account for
parameters interaction. Many authors (Blasone et al., 2008; Yang et al., 2008; Jin et5

al., 2010) have reported the weak correlation between parameters within the GLUE
method. One explanation can be that the selected sampling strategy cannot account
for parameters interaction since each parameter is individually randomly sampled from
its distribution.

5.2 Results of the regionalization approach10

5.2.1 Catchments clustering

The similarity metric based on the multidimensional space of CAs resulted into 4 un-
gauged catchments similar to the Vène catchment (Lauze, Aiguilles, Joncas and May-
roual) and 4 ungauged catchments similar to the Pallas catchment (Fontanilles, Aigu-
illes, Nègues Vacques and Soupié). Catchments within the same group are assumed15

to have similar hydrological behavior. The catchments clusters and the numbers of the
candidate Mps transferred from the donor to the receptor(s) catchment(s), calculated
using the similarity measure, are given in Table 3. The Vène and the Pallas catchment
are identified as the donor catchments while all the others ungauged watersheds are
considered as receptor catchments. The highest threshold value (Thresh) calculated20

using Eq. (3) is Thresh=0.50 and 0.66 for the Vène and the Pallas catchment, re-
spectively. These Thresh values are frequently used in literature to identify “behavioral”
Mps (Gassman et al., 2007; Shen et al., 2012). The lowest Thresh values range be-
tween 0.25 and 0.38 corresponding to a transfer of 89.18 % and of 96.52 % of the total
Mps sets of the Vène and the Pallas catchments, respectively (Table 3). These Thresh25

values correspond to poor model performances at the gauged catchments and can
be seen as low compared to what has been usually used in literature. However, as it
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was reported by Oudin et al. (2008), it is not straightforward to state whether or not
poorly modeled gauged catchment(s) parameters should be transferred to ungauged
catchment(s). From one side, it is expected that Mps associated with poorly modeled
hydrographs in gauged catchment(s) will yield poor model performances at the un-
gauged catchment(s). On the other side, transfer of Mps of poorly modeled gauged5

catchment(s) may add a diversity which can be beneficial for modeling the ungauged
catchment (Oudin et al., 2008).

5.2.2 Predicted Flow Duration Curves (FDCs) at the ungauged catchments

The FDC provides the percentage of time (duration) a daily or monthly (or some
other time interval) streamflow is exceeded over a period for a particular river basin10

(Castellarin et al., 2004). FDC may also be viewed as the complement of the cumula-
tive distribution function of the considered streamflow and is probably one of the most
informative methods of displaying the complete range of river discharges, from low
flows to flood events. Empirical FDCs can be easily constructed from streamflow ob-
servations using standardized non-parametric procedures (see Vogel and Fennessey,15

1994, 1995; Smakhtin, 2001; Castellarin et al., 2004). The FDC concerns only the flow
magnitude whereas the streamflow time series concerns both magnitude and time se-
quence. The flow percentiles conceptually represent different segments of the FDC:
high flow (≤Q10), median flows (Q10–Q50) and low flows (Q50–Q100). The simulated
FDCs resulting from the transfer of the GLUE Mps sets of the Pallas and the Vène20

catchment to the ungauged catchments, within their corresponding group, are plotted
in Fig. 5.

The slope of the simulated FDCs within the high flow percentiles (≤Q10) is rela-
tively steep for the two catchments groups, indicating that flood discharges are not
sustained for a long period of time. The slope of the end tail of the simulated FDCs,25

corresponding to low flow (≥Q50), is steeper in the Pallas catchment group, while it
is flattened out considerably in the Vène catchments group. This reflects the differ-
ence in the low flow regime between the two catchments groups. Catchments of the

4976

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/4951/2013/hessd-10-4951-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/4951/2013/hessd-10-4951-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 4951–5011, 2013

Uncertainty analysis
in model parameters

regionalization

H. Sellami et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Pallas group cease flowing at 20 % to 40 % of the simulation time period, while catch-
ments of the Vène group have more sustained baseflow contribution. Figure 6 shows
the coefficient of variation (CV=Standard deviation/Mean) and the mean magnitude
of the simulated FDCs flow percentiles for all the catchments and quantify their inter
and intra-catchments groups variability. It is clearly seen from Fig. 6 that the CV of the5

mean for all the FDCs flow percentiles within the Pallas catchments group is higher at
low flows than at higher flows while, for the Vène catchments group, the CV is more or
less steady across the flow percentiles, except for the Mayroual catchment. The intra-
catchments variability of the CV of the flow percentiles within each catchment group
shows that catchments within each group converge to a similar low flow CV value, ex-10

cept for the FDCs of the Fontanilles within the Pallas group and the Mayroual within the
Vène group. It is worth noting here, that these catchments exhibit the largest dissimilar-
ity in their physical attributes form their corresponding donor catchments. It is also clear
in Fig. 6 that the simulated mean flow magnitude of the different flow percentiles is very
low in both catchments group. The mean values of the high flow percentiles in both15

catchments group do not exceed 0.015 m3 s−1. However, the variation in the mean val-
ues of the simulated FDCs is more important in high flow percentiles than in low flow
percentiles in both catchment groups. In the Pallas catchment group, the mean flow
magnitude decreases rapidly from Q10 to Q20, then progressively from Q20 to Q50
leading to progressive increase in the CV within these flow percentiles and tends to20

be steady for flow percentile higher than Q50, which results in higher CV values. In
addition, at low flow percentiles (>Q50), all the simulated FDCs of the Pallas catch-
ment group tend to have similar mean flow values which resulted in less variability of
the CV at the low flow percentiles. Also, catchments within the Vène group have much
more variability in their simulated flow percentiles mean values than these of the Pallas25

group. The flow percentiles of the simulated FDCs of the Aiguilles catchment have the
highest mean values while the Mayroual and Lauze FDCs flow percentiles are very
similar and these of the Joncas catchment are the lowest values. It is worth noting
here to add that the CV of low flow percentiles is also compared to the catchments
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drainage area and to the soil characteristics within each ungauged catchment, but no
clear relationships is found.

5.2.3 Uncertainty in the predicted FDCs at the ungauged catchments

The uncertain simulated FDCs are represented in Fig. 5 in such a way that dissimi-
larity between the donor and the receptor catchment, within each catchments group,5

increases from the left to the right and from top to down. It is clearly seen form Fig. 5
that the FDCs uncertainty interval in both catchments groups is wider as the receptor
catchment is further from the donor catchment in the CAs space. This is also confirmed
by the relationship that exists between the number of Mps transferred from the donor
to the receptor catchments and the ASRIL factor plotted in Fig. 7. While the average10

FDCs uncertainty width (ASRIL) in both catchments groups tends to increase as the
dissimilarity between the donor and the receptor catchments increases, catchments
of the Pallas group show wider uncertainty interval than these of the Vène group. An-
other observation that can be made from Figs. 5 and 7 is that catchments that are very
similar to each other have similar uncertain FDCs shape and very close ASRIL factor15

values (see also Table 4). This is the case for the Joncas and Lauze catchments in
the Vène group and for the Nègues Vacques and Aygues Vacques catchments in the
Pallas group. This suggests that high similarity between CAs may lead to similar hydro-
logical responses and model prediction uncertainties of catchments that are under the
same climatic and geographic region. However, this assumption is far to be validated20

in this work and needs to be further investigated and checked in future work with larger
number of similar catchments or by simply gauging the catchments.

In order to check the consistency of the developed methodology in this work, at-
tempts are conducted to investigate if relationships between Mps uncertainty of the
donor catchment and the predicted uncertainty of the FDCs in the receptor catch-25

ments exist. This has been done through the calculation of the coefficient of variation
(CV) of the transferred model parameter within each ungauged catchment. The CV, as
it was described previously, can be used as a dimensionless measure of parameter
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uncertainty (Bastola et al., 2008). The variability of the CV of Mps transferred to the
ungauged catchments within each catchment group is given in Fig. 8. Results show
that the CV of Mps varies between the catchments depending on the parameter itself
and on the similarity distance between the receptor and the donor catchments.

In the Pallas catchment group, the CN2 and the SURLAG parameters show a clear5

variability in their corresponding CV values across the catchments. It is obvious that
uncertainty in CN2 and SURLAG parameters increases from the closest (Negues-
Vaques) to the furthest ungauged catchment (Fontanilles) from their respective donor
catchment (Fig. 8a). Moreover, the variability trend of the CV of the CN2 parameter
follows closely the trend of the ASRIL factor across the catchments, with a correlation10

coefficient of R2 =0.66 while the CV of the SURLAG parameter is less correlated to
the ASRIL factor (R2 =0.40). In the Vène catchment group, 3 out of 10 transferred
parameters show variable CV values across the catchments. These parameters are
CN2, GW DELAY and ALPHA BF (Fig. 8b). While all the other remaining parameters
show a constant CV at its maximum value across all the catchments, uncertainty in15

CN2, GW DELAY and ALPHA BF parameters increases progressively from the clos-
est similar ungauged catchment (Joncas) to the furthest one, but in different trends.
The variability of the CV of CN2 is well correlated to the ASRIL factor (R2 = 0.83)
while these of the GW DELAY and ALPHA BF parameters are less correlated to AS-
RIL (R2 =0.545 and 0. 540 for GW DELAY and ALPHA BF, respectively). These re-20

sults suggest that relationships exist between the transferred parameter uncertainty
and the predicted uncertainty width of the FDCs and between the CAs similarity dis-
tance and the predicted uncertainty in the ungauged catchment. The results are con-
sistent with the proposed methodology in this work which is based on the principle that
model prediction uncertainty intuitively increases as the dissimilarity in CAs between25

the donor and the receptor catchments increases. However, these results need to be
interpreted with care and precaution. Indeed, the CV is calculated for each model pa-
rameter individually without taking simultaneously into account the uncertainty and the
interactions between the other parameters while it is the whole parameters set that was
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transferred in the regionalization schemes. Furthermore, by relating the parameter CV
to the model prediction uncertainty in ungauged catchment, it is assumed that linear
relationship exists between parameter uncertainty and model prediction uncertainty at
the ungauged catchments. However, this linearity is difficult to check and to establish
because of the possible interdependency of the parameters, the non-linearity and the5

non-monotonicity of the hydrological model and because of other various sources of
uncertainty (uncertainty in input and model structure). Moreover, model parameters
that have steady CV across the ungauged catchments may contribute to model predic-
tion uncertainty when they are transferred in a set of parameters values and, therefore,
the CV of individual parameter may not reflect its real uncertainty. In addition to Mps,10

input and model structure uncertainty, regionalization procedures are known to have
additional uncertainty on model prediction in ungauged catchments (Wagener et al.,
2004; Heuvelmans et al., 2006; Bastola et al., 2008). In the proposed methodology it is
assumed that uncertainty that stems from the regionalization schemes is propagated
to model prediction in the ungauged catchment through the integration of the similar-15

ity measure in defining the Mps sets to be transferred from the donor to the receptor
catchments. However, partitioning each uncertainty source and telling to which extent
it can affect the model prediction is a very difficult task to perform.

5.3 Performances evaluation of the regionalization approach

5.3.1 Fit to observation20

The 95 % uncertainty interval and the median of each flow percentiles values of the
observed and the simulated FDCs for the ungauged catchments, where observed data
are available, are constructed and plotted in Fig. 9. Only 4 ungauged catchments have
some observed data that can be used to compare the results of the regionalization
approach. According to the observed FDCs, ungauged catchments cease flowing at25

50 to 60 % of the time while the predicted FDCs indicate that ungauged catchments
flow for longer period between 60 and 100 % of the simulation time period reflecting
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the ephemeral hydrological behaviour of the catchments (Fig. 9). The calculated NS
coefficient between the observed and the simulated median flow percentiles and the
average p factor values, corresponding to the average percentage of the observed flow
percentile values bracketed in the predicted uncertainty flow percentile interval, are
summarized in Table 5. Given the observation data available, the NS coefficient values5

are negative for the Soupié and Fontanilles catchments (NS=−0.131 and −0.144, re-
spectively), indicating that the observed median values of the different flow percentiles
are poorly reproduced by the model in these ungauged catchments. On the other hand,
positive NS values of 0.169 and 0.518 are obtained in the Aygues Vacques and in
the Joncas catchments, respectively, showing better model prediction of the flow per-10

centiles median values. While the simulated flow percentiles uncertainty intervals are
able to bracket most of the observation data (Fig. 9 and Table 5), there is a clear ten-
dency of the p factor increase with the decrease of the distance between the donor and
the receptor catchment. As it was demonstrated previously, the average relative width
of the uncertainty interval (ASRIL) increases as the dissimilarity between the donor and15

the receptor catchments increases. Therefore, more observation data are bracketed in
the flow percentile uncertainty interval of the ungauged catchments that are located far
from the donor catchment.

5.3.2 Fit to reality

The annual mass balance is calculated based on the average annual values of the20

different hydrological components that are computed by the SWAT model according to
Eq. (6).

WYLD = Surf Q+Lat Q+GW Q− TLosses (6)

where WYLD is the net water yield to reach (mm), Surf Q is the surface runoff (mm),
Lat Q is the lateral flow contribution to reach (mm), GW Q is the groundwater discharge25

into the reach (mm) and T Losses is the amount of water removed from the tributary
channel by transmission (mm).
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The average annual water budget, its components and their corresponding uncer-
tainty (calculated as the standard deviation) for each ungauged catchment are plotted
in Fig. 10. The results of the regionalization approach suggest that surface runoff is
the major component of the water budget (65 % in average) followed by the lateral flow
(22.7 % in average) and by the groundwater flow (12.3 % in average). However, all the5

hydrological balance components are estimated with large uncertainty. For instance,
about 65% of the WYLD uncertainty is attributed to the uncertainty of the estimated
surface runoff (Surf Q). In the SWAT model, Surf Q is estimated using the modified
Soil Conservation Service (SCS) curve number (CN) method which depends on the
soil moisture and land use cover. Therefore, any uncertainty in the soil and land use10

cover is translated to the associated curve number and affects the predicted Surf Q.
Moreover, in SWAT the runoff coefficient is calculated as the ratio of runoff volume to
rainfall. Therefore, uncertainty of the latter can affect the predicted peak flow which in
turn affects the predicted Surf Q.

The groundwater component (GW Q) has more important average contribution rate15

to the total water budget in the Vène catchments group (Joncas, Lauze, Aiguilles
and Mayroual) with an average of 11.71 %, than in the Pallas catchments group
(Nègues Vacques, Aygues Vacques, Soupié and Fontanilles), with an average of
6.47 %. In addition, GW Q within the Pallas catchments group occurs intermittently,
while it seems more sustained but also more uncertain within the Vène catchments20

group (Fig. 10). Because of the different sources of uncertainty (e.g. precipitation,
evapotranspiration, uncertainty in groundwater parameters) and the rainfall seasonal
variability, the groundwater volume and its level of fluctuation are estimated with un-
certainty that is translated into an uncertain GW Q. These results suggest that stream-
flow in the Vène catchments group (corresponding more or less to the eastern part25

of the Thau catchment, see Fig. 1) is more influenced by the groundwater flow contri-
bution than in the Pallas catchments group (corresponding to the central and western
part of the Thau catchment). However, validation of this result is not straightforward
since no information or data on groundwater are available in the study area and more
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hydrogeological measurements are required to check the results and to reduce the
groundwater discharge uncertainty.

About 2.5 % of the total water budget is lost via leaching through the stream bed (T
Losses). This type of losses is more important in the Pallas catchments group (5.3 %),
than in the Vène catchment group (1.37 %) (Fig. 10). Transmission losses become5

more important when GW Q decreases and vice versa. Because the SWAT model
creates more sustained shallow aquifer with larger water storage in the eastern part
than in the western part of the Thau catchment, the Vène catchments group is gaining
much more water through baseflow (GW Q+Lat Q) and, thus, there is smaller loss of
water through channel transmission in that case. However, besides the depth of wa-10

ter stored in the shallow aquifer, other geomorphologic parameters (e.g. the width and
length of the channel bed, etc.) and hydraulic parameters (e.g. effective hydraulic con-
ductivity of the river bed (Ch K ), geologic nature of the channel material) can affect
the transmission losses amount. For example, for catchments where the groundwater
level is beyond the river bed, the CH K value should be equal to zero (van Griensven15

et al., 2012) and should not be too high in humid catchments. Uncertainty in the esti-
mated transmission losses can stem from the uncertainty of the physical features of the
catchments introduced through the GIS data and used by SWAT to derive the channel
geomorphological characteristics and from the uncertainty of the CH K parameter.

5.3.3 Fit to geography20

This criterion is used here to assess the performances of the regionalization proce-
dure in reproducing the actual spatial distribution of the soil moisture in the Thau
catchment. Baghdadi et al. (2012) proposed a method to estimate the volumetric soil
moisture from RADARSAT-2 image (space Synthetic Aperture Radar “SAR” sensor)
for bare agricultural fields or fields with thin vegetation cover over the Thau basin25

for ten dates between November 2010 and March 2011. Their estimated soil mois-
ture values showed a good agreement with the measured in situ soil moisture with a
RMSE=0.065 cm3 cm−3 (see Baghdadi et al., 2012, for details). These estimated soil
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moisture maps, referred hereafter as “observed” soil moisture, are compared to the
soil moisture derived from the regionalization results which are referred hereafter as
predicted soil moisture. Since the “observed” soil moisture maps are available only for
three different dates (18 November, 4 and 12 December 2010) within the model simu-
lation period, the comparison between the “observed” and the predicted soil moistures5

is restricted to these 3 dates. Figure 11 shows the spatial distribution of the predicted
and the observed soil moisture for three different dates at the Thau catchment. The
predicted soil moisture is spatially correlated to the “observed” one but with different
degree of satisfaction. The latter can be broadly and arbitrary set to good, satisfac-
tory and poor based on the graphical investigation of Fig. 11. Good spatial correlation10

between the distribution of the predicted and the “observed” soil moisture is obtained
at the Vène, Aiguilles and Fontanilles catchments, while it can be considered as sat-
isfactory for the Joncas, Lauze, Pallas and Soupié and poor for the Aygues Vacques,
Mayroual and Nègues Vacques catchments. Overall, the predicted soil moisture has
an acceptable spatial distribution with the “observed” one which is more clear in the15

eastern part (corresponding to the Vène catchments group) than in the western part
(corresponding to the Pallas catchments group) of the Thau catchment.

The predicted soil moisture values on the three different dates at the Thau catchment
are also compared to the “observed” ones. Table 6 presents some statistical charac-
teristics of the 95 % “observed” and predicted soil moisture values on the three dates20

at the Thau catchment. The predicted soil moisture values ranges are slightly larger
than the “observed” ones. The variability of the predicted soil moisture on a given day
is larger as this day is preceded by wet days (Table 6). Nevertheless, the median and
the mean of the “observed” and predicted soil moisture values are in a good agree-
ment. However, the comparison of the “observed” and predicted soil moisture values25

is not straightforward since the model is predicting the soil moisture at the HRU scale
for soils with different vegetation type cover, while the “observed” soil moisture values
are made up for bare soils or soils with thin vegetation cover. In addition, “observed”
soil moisture values are made up for the top 5 to 10 cm of the soil profile whereas the
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predicted ones might be estimating by SWAT for the entire soil layer that can be much
more than 10 cm depth.

6 Summary and conclusions

This study examined the possibility of the Soil and Water Assessment Tool (SWAT)
model to accurately predict the daily discharge at gauged and ungauged catchments5

within an uncertainty framework. The model was implemented on a Mediterranean
catchment, called the Thau catchment located in southern France. Model calibration
and parameters uncertainty were conducted simultaneously using the GLUE method
(Beven and Binley, 1992) on two gauged subcatchments of the Thau watershed, re-
ferred to as the Vène and the Pallas catchment.10

We first questioned whether the selected hydrological model is suitable for reproduc-
ing the hydrology of the study area. The model showed good performances in repro-
ducing the daily observed discharge of the Vène and the Pallas catchments with NS
coefficient higher than 0.70. The model was able to cover more than 60 % of the ob-
servation discharge data of each catchment in its 95 % prediction uncertainty interval.15

However, the model prediction uncertainty was large in both study sites especially in
the Vène catchment due to the presence of the karstic features. The results suggested
also that SWAT can be applied to karstified watershed but with some constraints and
limitations unless its original structure is modified to explicitly handle these karstic fea-
tures.20

We subsequently questioned whether the selected hydrological model is able to pre-
dict the discharge at ungauged catchments. We analyzed this question through the
transfer of the SWAT model parameter sets from the gauged catchments (Vène and
Pallas) to the other ungauged catchments of the Thau watershed. A regionalization
approach based on a physical similarity measure (similarity in physical catchments25

attributes) was adopted to cluster the ungauged catchments. To transfer the model pa-
rameter sets from gauged to ungauged catchment, a new methodology was developed
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where the similarity measure was used as a threshold to select the numbers of the
candidate model parameter sets to be transferred from the gauged to the ungauged
catchment. Results showed that within the same catchments cluster, ungauged catch-
ments can exhibit similar hydrologic behavior if they exhibit high degree of similarity
in their physical attributes and have received similar model parameter sets. Similar5

ungauged catchments showed higher similarity at the predicted FDCs high flow per-
centiles than at low flow percentiles. The high variability of the predicted low flow values
was attributed to the predicted low mean values of the flow percentiles rather than to
the geology or to the catchment drainage area.

The performance of the regionalization method at the ungauged catchments was10

assessed through statistical and field reality criteria. The predicted median flow per-
centiles, given the available observed data, were poorly to acceptable reproduced by
the model. The predicted water balance revealed the prevailing of the surface runoff
component in the hydrology of the ungauged catchments. The predicted soil moisture
was satisfactory spatially correlated to the “observed” one for some given dates. The15

findings suggest that the SWAT model parameters can be regionalized to predict dis-
charge at ungauged catchments and the results can fit the reality of the study case.
However, thorough evaluation and criticism of its performances is constrained by the
availability of the observation data at the ungauged catchments. Therefore, other eval-
uation criteria such as fit to reality and fit to geography can be used to describe the20

model performances in these ungauged catchments.
We also showed in this work how parameter uncertainty can affect model prediction

uncertainty at ungauged catchment through the regionalization of the model param-
eters. The assumptions behind the developed methodology were that similar catch-
ments (similar in their physical attributes) are hydrologically similar and that model pre-25

diction uncertainty increases as the dissimilarity between the donor and the receptor
catchment decreases. The developed methodology allows propagating model param-
eter uncertainty proportionally to the similarity measure. Furthermore, the integration
of the similarity measure in the function used to calculate the threshold value makes
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the selection of the donor catchment parameter sets more objective than the tradi-
tional approach which is based on modeler subjective choice of the threshold value.
It was shown that model prediction uncertainty was influenced by the similarity dis-
tance between the donor and the receptor catchment; wider prediction uncertainty is
obtained as the dissimilarity between the donor and the receptor catchment increases.5

It was also shown that within the same climatic and geographic region, catchments
that are very similar to each other and have received similar model parameter sets
exhibit similar degree of prediction uncertainty. In addition, the findings showed that
the selected threshold values and, hence, the number and the uncertainty of the pa-
rameters transferred can affect the prediction uncertainty at the ungauged catchment.10

If a higher degree of similarity exists between the donor and the receptor catchments,
then a higher threshold value is selected and a lower uncertainty of model param-
eters is propagated to the ungauged catchment which yields to lower prediction un-
certainty in the ungauged catchment. Otherwise, a lower threshold value is selected
and a wider uncertain parameter sets are transferred which will yield a larger uncer-15

tain model prediction at the target catchment. However, it is not pretended with these
results that uncertainty in the transferred parameter sets is the only one driving the un-
certainty source for model prediction uncertainty at the ungauged catchment. As it was
demonstrated by the results, although the relationship between the transferred model
parameters uncertainty and model prediction uncertainty at the ungauged catchments20

exists, this relationship is far to be linear due to the non-linearity of the hydrological
model, to the possible correlation between the parameters, to the equifinality prob-
lem, to the non-identifiable parameters and to other sources of uncertainty (e.g. model
structure, inputs uncertainty) that are difficult to be simultaneously taken into account.
This suggests that, besides parameter uncertainty all sources of uncertainty should25

be considered in an integrated regionalization framework while transferring the model
parameters from the donor to the receptors catchments.

To our knowledge, a hydrological study of the entire Thau catchment was never
done before. Therefore, building on the regionalization approach, this work can be
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considered as a starting point for further research study of hydrological issues in this
catchment.

We think that the developed methodology in this work provides more objectivity in
the selection of the transferrable model parameters sets for estimating the discharge at
the ungauged catchments. This can reduce a part of the additional uncertainty that can5

be introduced by the user through his subjective selection of the transferrable model
parameters. However, some subjective choices are inevitable such as the choice of
the similarity measure and the selection of the catchment attributes which can have
an additional source of uncertainty. We think also that the speculation behinds the
developed methodology such as model prediction uncertainty at the ungauged catch-10

ments increases as the dissimilarity between the donor and the receptor catchment
increases is appealing, reasonable and provides more reliable prediction uncertainty
at the ungauged catchment than the traditional approach. The method is easy and
can be replicated with any model parameters transfer approach for estimating flow at
ungauged catchments within an uncertainty propagation framework.15
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Table 1. Description of the catchments attributes.

Catchment Drainage Mean Average Vineyards Non-agr Dominant Geology
name area (km2) elevation (m) slope (%) (%) vegetation (%) Soil texture (surface %)

Vène 67 94.29 8.47 12.30 64 SA-L JL-MM
Pallas 54 71.33 7 20.35 45.48 S-L JL-MM
Lauze 9.25 64.22 8.16 8.027 64 S-L JL-MM
Aiguilles 3.42 60 5.87 0.34 83.27 S-C-L JL-MM
Joncas 4.14 74.45 6.56 2.5 84.22 S-C-L JL-MM
Aygues Vacques 12.34 29.52 3.56 14.40 37.33 S-L MM
Negue 28.50 53.52 4 29.18 41.32 L MM
Mayroual 5.10 20.45 2.55 48.63 25.15 L MM
Soupié 15.82 43.38 3.79 35.88 45 L MM
Fontanilles 7.40 21.21 2.38 31.39 27.11 L MM

Soil code: SA-L: sandy loam, S-L: silty loam, S-C-L: silty clayey loam and L: loam. Geology code: JL, Jurassic
Limestone; MM, Miocene Marls.
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Table 2. The selected sensitive parameters, their initial range and their SA ranking result.

SA ranking

Name A priori distribution Vène Pallas Parameter description [unit]

ALPHA BF U [0.1–1] 1 2 Base-flow alpha factor [days]
GW DELAY U [0–500] 3 7 Groundwater delay [days]
GW REVAP U [0.02–0.2] 6 8 Groundwater “revap” coefficient [none]
GWQMN U [0–5000] 2 1 Threshold water depth in the shallow aquifer for flow [mm]
CN2∗ U [0.1–0.9] 9 3 Initial SCS CN II value [none]
ESCO U [0.1–1] 8 6 Soil evaporation compensation factor [none]
EPCO U [0–1] 7 9 Plant uptake compensation factor [none]
SURLAG U [1–24] 10 10 Surface runoff lag time [days]
CH N2 U [0.1–0.3] 5 5 Manning’s n value for main channel [none]
CH K2 U [1–150] 4 4 Channel effective hydraulic conductivity [mm h−1]

Note: U means uniform distribution. ∗ Means fraction of variation by which the initial value of the parameter is
changed.
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Table 3. Results of catchments clustering and number of Mps transferred from the donor to the
receptor catchment based on the similarity measure.

Donor Receptor Threshold % of
catchment catchment Similarity (Thresh) Mps

Catchments cluster Vène Joncas 0.71 0.50 44.10
Lauze 0.70 0.49 46.95
Aiguilles 0.66 0.46 54.62
Mayroual 0.36 0.25 89.18

Pallas Nègues Vacques 0.88 0.66 16.60
Aygues Vacques 0.71 0.54 85.16
Soupié 0.70 0.53 86.47
Fontanilles 0.50 0.38 96.52

Note: the %Mps corresponds to the percentage of the transferred Mps out of 10 000.
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Table 4. Measure of the ASRIL factor of the predicted FDCs uncertainty intervals in the un-
gauged catchments.

Donor catchment

Ungauged catchment Vène Pallas

Lauze 0.018 –
Aiguilles 0.031 –
Joncas 0.019 –
Mayroual 0.207 –
Fontanilles – 0.196
Aygues Vacques – 0.117
Negue Vaques – 0.113
Soupié – 0.169

4998

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/4951/2013/hessd-10-4951-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/4951/2013/hessd-10-4951-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 4951–5011, 2013

Uncertainty analysis
in model parameters

regionalization

H. Sellami et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 5. Statistical criteria of the regionalization approach results.

Catchment Aygues Vacques Soupié Fontanilles Joncas

NS 0.169 −0.131 −0.144 0.518
p factor (%) 18 65 73 87
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Table 6. Statistical criteria of the “observed” and predicted soil moisture values on three dates
at the Thau catchment.

“Observed” soil moisture (cm3 cm−3) Predicted soil moisture (cm3 cm−3)

95 % 18 Nov 2010 4 Dec 2010 12 Dec 2010 18 Nov 2010 4 Dec 2010 12 Dec 2010

Prec.∗ 2.2 0.6 0 2.2 0.6 0
Min–Max 0.08–0.27 0.10–0.26 0.03–0.19 0.08–0.33 0.04–0.30 0.01–0.28
Median 0.167 0.162 0.07 0.142 0.102 0.07
Mean 0.169 0.166 0.08 0.167 0.127 0.09

Note: ∗ Prec. is the cumulative precipitation in (mm) from the 3 previous days to the selected date.
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 1 

Fig. 1. Location of the Thau catchment, topography and its sub-watersheds.  2 
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Fig. 1. Location of the Thau catchment, topography and its sub-watersheds.
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Fig. 2. Land use distribution in the Vène and in the Pallas watersheds for 1996 and 2010  2 
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Fig. 2. Land use distribution in the Vène and in the Pallas watersheds for 1996 and 2010.
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 1 

Fig. 3. GLUE prediction uncertainty bounds for the Vène and the Pallas catchment. The grey 2 
shaded area is the 95% prediction uncertainty interval and the black dotted line corresponds to 3 
the observed discharge 4 
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Fig. 3. GLUE prediction uncertainty bounds for the Vène and the Pallas catchment. The grey
shaded area is the 95 % prediction uncertainty interval and the black dotted line corresponds
to the observed discharge.
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 2 

 3 

Fig. 4. Example of the effect of the threshold value on the posterior parameter distribution 4 
derived by GLUE. 5 
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Fig. 4. Example of the effect of the threshold value on the posterior parameter distribution
derived by GLUE.
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 1 

(a) Uncertain simulated FDCs for the Pallas catchments group 2 

 3 

(b) Uncertain simulated FDCs for the Vène catchments group 4 
 5 

Fig. 5. Simulated uncertain FDCs for the ungauged catchments based on model parameters 6 
regionalization 7 
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(a) Uncertain simulated FDCs for the Pallas catchments group 2 

 3 

(b) Uncertain simulated FDCs for the Vène catchments group 4 
 5 

Fig. 5. Simulated uncertain FDCs for the ungauged catchments based on model parameters 6 
regionalization 7 

Fig. 5. Simulated uncertain FDCs for the ungauged catchments based on model parameters
regionalization.
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 1 

Fig. 6. Mean and coefficient of variation of the predicted FDCs percentiles based on the 2 
physical similarity approach for the Pallas catchments group (Pallas) and for the Vène 3 
catchments group (Vène). 4 
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Fig. 6. Mean and coefficient of variation of the predicted FDCs percentiles based on the phys-
ical similarity approach for the Pallas catchments group (Pallas) and for the Vène catchments
group (Vène).
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 2 

 3 

Fig. 7. Relationship between the number of transferred model parameter sets and the ASRIL 4 
factor at the ungauged catchments. 5 
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Fig. 7. Relationship between the number of transferred model parameter sets and the ASRIL
factor at the ungauged catchments.
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 1 

(a)  Pallas catchments group 2 
 3 

 4 

                                                        (b) Vène catchments group 5 
 6 

Fig. 8. Relationship between the CV variability of the transferred model parameter from 7 
gauged to the ungauged catchments and the ASRIL factor within each catchments group. 8 
 9 
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(a)  Pallas catchments group 2 
 3 

 4 

                                                        (b) Vène catchments group 5 
 6 

Fig. 8. Relationship between the CV variability of the transferred model parameter from 7 
gauged to the ungauged catchments and the ASRIL factor within each catchments group. 8 
 9 Fig. 8. Relationship between the CV variability of the transferred model parameter from gauged

to the ungauged catchments and the ASRIL factor within each catchments group.
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 1 

Fig. 9. 95% uncertainty interval of the simulated FDCs flow percentiles versus 95% of the 2 
observed FDCs flow percentiles resulting from the model parameters regionalization 3 
approach. Results correspond to the transfer of the Pallas model parameter sets to the 4 
Aygues_Vacques, Soupié and Fontanilles catchments and transfer of the Vène model 5 
parameters sets to the Joncas catchments. The blue color is for simulation and the red color is 6 
for observation. The bar corresponds to the 95% flow percentile value while the square 7 
corresponds to the flow percentile median value. 8 
 9 
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Fig. 9. 95 % uncertainty interval of the simulated FDCs flow percentiles versus 95 % of the
observed FDCs flow percentiles resulting from the model parameters regionalization approach.
Results correspond to the transfer of the Pallas model parameter sets to the Aygues Vacques,
Soupié and Fontanilles catchments and transfer of the Vène model parameters sets to the
Joncas catchments. The blue color is for simulation and the red color is for observation. The
bar corresponds to the 95 % flow percentile value while the square corresponds to the flow
percentile median value.
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 1 

 2 

Fig. 10. Average annual water balance simulated at the ungauged catchments based on the 3 
regionalization approach. The error bars represent the standard deviation calculated based on 4 
all model simulations. 5 
 6 
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Fig. 10. Average annual water balance simulated at the ungauged catchments based on the
regionalization approach. The error bars represent the standard deviation calculated based on
all model simulations.
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 2 

Fig. 11. Distribution of the soil moisture within the Thau catchment for 3 different dates;  (a) is the “observed” soil moisture (Baghdadi et al., 3 
2012) and (b) is the predicted soil moisture based on the regionalization results. 4 
 5 

(a) 

(b) 

Fig. 11. Distribution of the soil moisture within the Thau catchment for 3 different dates; (a) is
the “observed” soil moisture (Baghdadi et al., 2012) and (b) is the predicted soil moisture based
on the regionalization results.
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